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Density Effects in Internal-Energy Transport in 
Polyatomic Gases 1 

L.  M o n c h i e k  2 

Tile revised Enskog theory is used in a heuristic way to modify the Wang 
Chang-Uhlenbeck quantum kinetic equation for polyatomic gases close to 
thermodynamic equilibrium. The density effects predicted for the total and inter- 
nal thermal conductivities are in qualitative agreement with recent molecular 
dynamic calculations, suggesting that inelastic effects should be included in 
dense Iluid transport theory. 
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1. I N T R O D U C T I O N  

The Wang Chang-Uhlenbeck quantum kinetic equation (WCUE) [1, 2] 
can be shown to be the degeneracy averaged form of the Waldman-Snider 
quantum kinetic equation (WSE) [3, 4], the proper quantum extension of 
the classical Boltzman equation [5, 6]. WCUE had its initial success when 
Mason and Monchick [7]  used it to describe the thermal conductivity of 
polyatomic gases with internal degrees of freedom. WSE, which is more 
general, can describe processes which WCUE cannot: Senftleben-Beenakker 
effects [8 ]  and rotovibrational line shapes [9, 10] The drawback of both 
WSE and WCUE is that they are limited to low and moderate molecular 
densities where only isolated two molecule collisions are nonnegligible. 
Although an analogue to the classical modified Enskog theory has 
appeared [ 11 ], it has not as yet been applied to the description of gas 
transport properties at high pressures. In particular, no high-density 
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analogue of the Mason-Monchick thermal conductivity [ 7] approximation 
exists. 

In lieu of a true WCU or WSE theory of thermal conductivity of 
polyatomic gases, there are two ad hoc marriages [6, 12] of low-density 
Eucken expressions and standard [6] or revised Enskog [ 12, 13] theories 
of classical rigid spheres and one set of molecular-dynamics calculations 
[ 14]. Each study predicts a different density dependence of the internal 
state thermal conductivity, 2~,,~. The present study suggests the reason for 
this disparity and outlines a heuristic theory of high-density thermal con- 
ductivity. 

In the Castillo-Orozco paper [12], the density dependence of the 
revised Enskog theory (RET) [13] of classical smooth rigid spheres 
(CSRSI is added to the modified Eucken theory (cf. Ref. 6, Sect. 7.6bl of 
the thermal conductivity of polyatomic gases. That is, 2~,,t is taken to be 
proportional to nm.9/Z, the number density, n, times the mass, m, times the 
self-diffusion coefficient, .~, divided by the relative molecular distribution, 
2',, evaluated at the molecular distance of closest approach. As reported in 
the next section, this is consistent with RET and the assumption of negli- 
gible inelasticity: 2m, is found to make a contribution to 2,,,, the total 
thermal conductivity, which is significant at low, but negligible at high, 
densities. The agreement with empirical correlations is not too bad. 
A similar assumption utilizing SET, the standard Enskog theory, [5] is 
made in Section 9.3e-ii of The Molecuhw Theory o1" Gases and Liquids [6] 
(MTGL). This leads to a 2~,. varying like nm~, i.e.. independently of 
pressure; if this were applied to the same data, it would worsen the agree- 
ment with theory markedly, The SET- and the RET-based theories both 
neglect rotational relaxation. In contrast, the molecular-dynamics results 
conducted with a model diatomic fluid [14] predict that 2~,,, increases 
significantly with density and that the ratio, 2m~/2~,.. decreases initially and 
then seems to reach a finite asymptote. It is also difficult to reconcile the 
Castillo-Orozco or the MTGE result with the kinetic theories of classical 
rough spheres at high densities, which also predict a large dependence on 
internal state, in this case, spin [ 15, 16]. 

In the following, the Wang Chang-Uhlenbeck equation will be 
modified in an ad hoc way to incorporate density effects in the same way 
that the revised Enskog Theory incorporates them in the classical smooth 
rigid sphere Boltzmann equation. Solved in the usual manner, the retention 
of rotational relaxation terms leads to a translational thermal conductivity, 
2... slightly smaller than the Castillo-Orozco result and to 2~,,~ increasing 
at very high densities at least as quickly as 2.. does. This is qualitatively 
consistent with the results obtained by Murad et al. [ 14]. As an added 
benefit, a more than compensating increase in inelastic terms in 2,~ would 
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tend to improve Castillo and Orozco's correlations of the experimental 
data with RET [ 12] or theories which start with RET [ 17]. In the next 
section the derivation of the thermal conductivity is presented in some 
detail as a demonstration of how naturally complex density effects can 
appear in the internal-energy contribution in a kinetic theory of sufficient 
generality and as a tribute to the memory of Professor Mason, one of 
whose lasting interests was the theory of thermal conductivity in 
polyatomic gases. 

2. R E T - W C U  T H E O R Y  

The object is to derive not a rigorous tbrmula, but a simple, heuristic, 
extension of the theory for the thermal conductivity at moderate densities. 
This extension simply multiplies the degeneracy averaged state-to-state 
differential scattering cross section, lij" ~.~(k), in the WCUE collision term by 
the RET function Z [ 13] and identifies the contact collision-transfer terms 
with those evaluated by Ldpez de Haro et al. [ 18] for mixtures of smooth 
rigid spheres. The species indices are then identified as the indices of the 
internal states, which then, at least for the contact collision transfer terms, 
are required to be in thermodynamic equilibrium. 

Thus the state-to-state differential scattering cross section is replaced 
as follows: 

I , i  k/(k) ~ I~7. k/(fi) - l,.a/([~)Z,i(r, r + cr,jfi I ~ ~ + �9 ~ _ ~ n~j ) = Lj.~/(f~) ;(0 (1) 

Here i and j are the initial internal states (degeneracy averaged) of the 
colliding molecules, k and / are the final values, and Z, the local radial dis- 
tribution function for a system with nonuniform density evaluated at the 
distance of closest approach, a, is an increasing function of the local 
macroscopic density, p(r), evaluated at a given position coordinate, r. The 
implicit dependence of Z on the local number densities, {hi}, is stated to 
be necessary for the linearized theory to satisfy the Onsager relations [ 13 ]. 
In addition, the local molecular distribution functions must also be 
evaluated at r + aft. The revised Enskog theory/Wang Chang-Uhlenbeck 
(RET-WCU)  equation then becomes 

+ v J)( r, v, t ) = ~  "dv t  df~[g'I~.,/(f~)./'A.(r+axt[~, v', t)J)(r, V'n, t) 
A / 

-g l i j i~ . t (k jJ ; . ( r , v , t )J ) ( r -a i /k ,v , , t )  ] (2) 
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Here v and v' are the initial and final velocities of the test particle, v~ and 
v't are the initial and final velocities of the colliding particle, and g and g' 
are the initial and final relative velocities. 

As first shown by Enskog [19, 5 ], a Chapman-Enskog solution of the 
Enskog equation can be carried out if the collision term is expanded in 
powers of a and the first-order perturbation terms, which can be inter- 
preted as contact collisional transfer terms, are combined with the zeroth- 
order drift terms. In Eq. (21, the indices i, j ,  k,  I are regarded as species 
indices and the manifold of internal states as a mixture of distinguishable 
particles [20] later allowed to exchange identities. This is just a generaliza- 
tion of MTGL's  derivation of the modified Eucken approximation [6] .  
In the limit Z ~ 1, Eq. (2) may be regarded as the degeneracy average of a 
quantum kinetic equation for reacting molecules [21].  If, for the contact 
collision transfer processes, it is assumed that changes of internal state are 
relatively rare, i.e., Iij. k ~ -  I~j. it 6~. c5~,~, the contact collision transfer terms 
can be identified unambiguously as those evaluated by L6pez de Haro et 
al. [18] for mixtures of unreactive molecules. In this form, the formulae of 
the linearized RET kinetic equation for mixtures [ 18, 22] may be carried 
over unchanged to obtain the linearized RET-W CU  equation. With the 
definitions 

f~/(r, v, t)=ni(m/2~z]~'T) 3 2 exp( -- W 2) 

= n x i ( m / 2 g k T ) 3 2  exp( - W 2) (3) 

g = v - v  I (4) 

g' = v ' -  v'~ (5) 

W = ( m / 2 k T )  I 2 (v - v~,) (6) 

the integral equation for ~, the perturbation to the distribution function in 
the Chapman-Enskog approximation is, in the absence of shear flow, 

t"l,(r (9~cp)~= - ~  " d r ,  d k  gz ,  I~j.k~(k)., j , v~, t) 
jkl  

x [ ~oA v) + ~oi(v, ) - (~0k(V') + Cp,(V'~ ))] 

=ndg . (v- -vo)  + n i K i ( W  ~--5/2)(v-vo)V In T 

- ' ~ i  . ( v - v , )  (7) 

,,=EfdvJ;Ir, v, t)= E,,,=,, Y..u 
i i i 

v , , = ~  y dv vJ)(r, v, t) 
i 
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T= k ' ~  d v ~ ( v - v , , ) - f i ( r , v , t )  (8) 
i 

k = l  

+xiKiV In T (9) 

3 ' 
K i = 1 -}-5 .2 niS#Zii,  

i i 

ff~i = 1 "t- k niBiixii,. 

p = n k T  1+17 ~ x/xkBtkT, i~ ,. (10) 
t.k=l 

Here Bit, properly the rigid-sphere second virial coefficient divided by 
Avogadro's number, is understood to be the real molecule equivalent, 
where the states i and j are to be treated as distinguishable molecules. We 
now introduce the first of four simplifications: (i) the requirement that the 
distribution of internal states on the rhs be close to equilibrium, 

x i =  Q ' exp(-e~) 

e,=E~"'/kT (11) 

Q = ~  exp(-el )  
i 

This has the effect of reducing the range of distributions described by the 
density matrix or the necessity for source and/or sink terms in Eq. (9). The 
chemical potential is generally assumed to have the form [23] 

Ig/kT= In n~ + const + 2 ~ n~B~i;? u (12) 
t 

We now introduce two more simplifications: (ii) the constant in Eq. (12) 
has the form - l n ( n  exp(-e i /kT)) ;  and (iii) Bi t -  B, Z=-2, Vi, j. This leads 
to 

/ l i /kT= In h i -  ln(n e x p ( - e j k T ) )  + 2nB~ (13) 

which is now consistent with Eq. ( 11 ) and thermodynamic equilibrium, and 
to 

K~=K+ 1 + ~nB;~,. 

R~ = ~2 = 1 + nB~,. (14) 

p = nkT( 1 + nB;~, ) 

,~40 is 4-3 
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Equation (3), (13), (14), the Gibbs-Duhem relation, and the zero external 
field lead to a simplified drift term, ~ ,  composed of a set of two driving 
terms analogous to chemical potentials: 

' ~ i  T 1 = n,.(d i + d i ) - ( v - v . )  

d~=  K( W e - 5/2) V In T =  -KU'~  2.#~',' V In T 

,:o :,~l Vln T d l = ( k T )  i ( e i - g )  Vln T = . - 3 e , : -  / 

(15) 

representing, in order, driving terms for the diffusion of kinetic energy and 
internal energy. {57'"(W-')} ...... are the well-known Sonine polynomials 
ubiquitous in transport-property theory and .~"j are the internal-state 
orthogonalized polynomials common to many transport property theories 
of polyatomic molecules [ 1, 2, 7]. The first two internal-state polynomials 
are .~]: 1 and 9)�88 -~ ( e ~ - g ) .  Assumption (3) has enabled us to set 

Z- l(~-R~~ ~ (16) 

where 9{~' is the low-density collision operator. The collision integrals 
appearing on the lhs will now be the usual ones appearing in moderate- 
density WCU theory [ 1, 2. 7], but the rhs driving terms for translational 
heat flux and for internal-energy flux will now have the new rnultipliers, 

'~ _ J i m  K Z ~ and Z ~. The base vectors , ~  ~ ,  (v-v , , )  span the kinetic variable 
space relevant to thermal energy flux. With Eq. (15) we see that in the 
absence of shear flow, the right-hand side of Eq. (7) is composed of just 
two of them. This suggests the representation 

t,~r~:l 3~~ ~i+A~b)(v ) . V l n T  (17) ( t 0 = ~  , 3 2 . / i  / ~  ~ 3 2 '  i - - u  

The final simplification may now be made. (4) A(b is usually small and 
will be neglected. This reduces the problem of inverting ~.R to the inversion 
of a two-dimensional matrix but it also has eliminated all thermal-diffusion 
fluxes of the internal states. Since the coupling terms, 91v~ and 9{n-, do not 
vanish if rotational relaxation does not vanish, both c v and cL and thus 
both 2,r and 2~n,, will have mixtures of terms proportional to K Z - ~  and 
Z ~. If, as in the moderate-density WCU procedure [ 1, 2, 6, 7], we make 
the usual replacements o fQ ~ t. ~ fy2.2~ and the cross terms by the moderate 
density expressions relating them to the self-diffusion coefficient, 2 ,  the 
shear viscosity, q, and the rotational relaxation time, r, the RET extension 
of the Mason-Monchick approximation to the thermal conductivity 
becomes 
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2inL = 'intZ 1 + ~  K 5 q / 1  

15 kll 
, I ,  = - -  _ _  ( 2 0 )  z. .  4 m 

I) Cin t l?Dl~ 
z , .  (21) 

II1 

where c~,,t is the internal state heat caspacity. 

3. DISCUSSION 

From Eqs. (18) and (19) it is seen that what was assumed [12, 17] to 
be the main term of 2~,, t becomes vanishingly small with increasing density 
and that an initially minor correction term eventually increases as rapidly 
as Z,r, i.e., that 2i,,,/2,r ---, const ,r 1, in such a way that at sufficiently high 
17,),~,,, >>211,,. This general behavior is qualitatively consistent with the 
molecular-dynamics results of Murad et al. [ 14], i.e., at least one compo- 
nent of the internal thermal conductivity does not vanish at high densities. 
Also, since 2,,t is less than 2~,,, (Castillo and Orozco), a slight improvement 
on their correlations might be possible. At extremely high densities, where 
rotations become librations, the theory breaks down. 

The final simple formula for the thermal conductivity is based on a 
two-term expansion of the density matrix. The solution requires the inver- 
sion of a two-dimensional matrix equation, .r = ~,  where ,~T varies as 
KZ ~ and .~t as Z ~. The KZ ~ dependence of 2 , .  is a direct result of the 
possibility of rotational relaxation which couples both modes. This par- 
ticular form of ,~, in which only two of the basis vectors of the space 
appear, results fi'om the assumption of thermodynamic equilibrium of 
internal states in the zeroth approximation. Since .~ is not changed by 
including higher-order terms in cp, the general tbrm of Eqs. (18) and (19) 
will remain unchanged, even though individual terms will become more 
complex functions of the collision integrals. 

The weak point of this heuristic theory is the adoption of Eq. (1) and 
the assumption that I~i,k I -~I~i" ~ i~  ~k/ for the contact collision transfer 
terms. Although for models which can be evaluated exactly, such as rough 
spheres [ 15, 16], collision transfer terms of internal state flux and angular 
momentum flux can be evaluated and turn out to be significant, the 
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moderately successful correlation of Castillo and Orozco [12] and the 
molecular-dynamics study of Murad et al. [ 14] suggest that the heuristic 
theory outlined here describes many if not most systems of interest and 
that rough-sphere models may overestimate rotational energy interchange. 

From an engineering point of view, the result is mainly of academic 
interest. The source of a slnall discrepancy may have found its explanation, 
an explanation which suggests that more rigorous theories will not result 
in further surprises. Fundamentally, it may have other uses. One difficulty 
in comparing ab #~itio calculations with experiment is that the thermal con- 
ductivity is more complex than the shear viscosity: Eq. (18), for instance, 
is a function of momentum transfer cross sections, ,~, momentum-flux 
transfer cross sections, ~1, and inelastic collisions, r. The possibility of 
simultaneous measurements of 2, 2,,. (by thermal transpiration or thermal 
diffusion of lnicron-size particles), and r as functions of density may 
provide alternate ways of checking the internal consisteny of ab initio 
calculations. Another use is that it demonstrates mechanisms that should 
be included in calculations [12, 17] using RET as a starting point. 
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